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I. Introduction

The purpose of this paper is to develop a scaling hypothesis for the

Hall effect in disordered electron systems. Our arguments are based on the

scaling theory of electron localization which has recently been developed by

Abrahams et al.1,2 The scaling parameter in their theory is the dimensionless

conductance g(L) - G(L)/(e 2/-r) at length scale L . Here G(L) is the zero

temperature conductance of a hypercubic sample of size L in d dimensions.

The conductance at scale bL (b is the scaling factor) is determined by the

scaling relation
1

g(bL) - f(b;g(L)), (1.1)

or in continuous terms

d In g/d In - B(g) (1.2)

where, for each d , B is a universal function of g only.

I The scaling theory predicts d - 2 as the lower critical dimensionality

in the following sense: The existence of a mobility edge is indicated by a

zero of the 8-function. At d - 2, 0(g) < 0 for all finite g , and no

zero occurs. For d > 2 , B(g) has a zero, and the conductivity

a(E) = (e 2MW r) Iim L2-d g(L;E) (1.3)
L-_

* is finite for Fermi energies E higher than the mobility edge E . Near~c

(above) Ec , we have
Jt

(E) - (E-E)t (1.4)

The conductivity exponent t is related to the correlation length exponent

v by

t - (d-2)v , (1.5)

a result first obtained by Wegner.
3
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We want to extend the scaling arguments of Ref. 1 to the Hall effect.

The influence of magnetic field on the localization picture at d - 2 has

4-6* been discussed from the microscopic point of view by several authors. The

calculations in these papers are restricted to the weak scattering limit.

Here we shall give a scaling hypothesis which gives the behavior near the

*mobility edge. While our arguments are given for temperature T = 0 , we

expect that at finite T the length scale is set by the temperature-depen-
l 7,8

dent Thouless length LT 2 (1 1 where the £'s are the elastic and

(temperature-dependent) inelastic mean-free paths.

4 In Section II, we formulate the scaling hypothesis. The hypothesis

*is supported to some extent by a microscopic calculation in Section III. In

Section IV, we give an explicit calculation in 2 + c dimensions where the

mobility edge is accessible by perturbation theory. The conclusions are

su marized in Section V.

II. The Scaling Hypothesis for the Hall Conductance

The Hall conductance GH  is defined in terms of the transverse Hall

voltage UH , the longitudinal voltage U and the conductance G by
4

G H GU H/U (2.1)

The Hall conductivity is defined as

SH(E) - lim L2-d GH(L;E) . (2.2)
; L"

For E < E , i.e. in the insulating region, aH = 0 since there can be no
cH

Hall voltage without an ohmic current. When the mobility edge is approached

from above, OH(E) presumably approaches zero according to

rt
SOH(E) - (E-E) (2.3)

which defines the Hall conducitivity exponent tH
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Let us introduce a dimensionless Hall conductance gH(L) = GH(L)/(e 2 /1)

and try to understand how it might scale with the sample size L.

It is instructive to start with the classical transport regime. In

this regime macroscopic transport theory is valid, the parameter g(L) is
Ld-2

much larger than unity and it scales with L as L . The Hall field

EH = rBj , where r is the Hall constant of the material and j is the

current density. Since UH = EHL and JLd -1 - UG , we have
KH H

UH - (e2/M)rBL-(d-2)gU (2.4)

or, using Eq. (2.1),

gH(L) = (e2/ )rBL-(d-2)g2(L) . (2.5)

d- 2
In this classical regime g(bL) = b g(L) and thus Eq. (2.5) implies the

following scaling relation for gH(L):

gH(bL) - (e2/h)rBL- d2) bd 2 g2 (L)

- h 1 (L)bd-2 g2 (L) . (2.6)

cl

The parameter hcl has the meaning of a conductance L d-2/rB , measured in

units (e2/1) . In the classical transport regime both hc(L) and the

d-2scaling parameter g(L) scale as Ld , and so does the Hall conductance

9H(L).

We now assume that gH(L) possesses scaling behaviour not only in

the classical limit (i.e. for g w -) but for any value of the scaling para-

meter g(L). With Eq. (1.1) in mind, the generalization of Eq. (2.6) suggests

the following scaling relation:

gH(bL) - h-(L)F(b;g(L)), (2.7)
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where h(L) is a (dimensionless) conductance inversely proportional to the

magnetic field B.

According to the universality argument of Ref. I the dimensionless

conductance g(L) scales classically, i.e. as Ld - 2 , whenever it is large.

We now assume that the same is true for h(L), i.e. h(L) - Ld - 2 for h >> 1.

For small enough B the condition h >> 1 will be satisfied whatever the

value of g is. In fact our assumption is that even when quantum correc-

tions to g(L) become important, h(L) still scales classically if it is

large enough. Fukuyama's microscopic calculation4 in two dimensions gives

some evidence in favor of this assumption as does the 2 + e dimension

calculation in Section III. Thus, if we require h to be large even at

some typical microscopic scale L0 , we get a rough criterion for a weak

magnetic field. This requirement gives B << rL . (Estimatingd0

r i/enc = Ld/ec , we have B << Tc/eL2 . If L0  is of the order of

interatomic spacing this gives the usual requirement for a 'Elassical" magne-

tic field in metals.)

If the conjecture about classical scaling of the parameter h(L), for

any value of g(L) , is correct, we have:

had-2
gH(bL) - L -(d -2  F(b;g(L)) . (2.8)

It follows from this equation that the Hall conductivity exponent (Eq.(2.3))

t- 2(d-2)v 2t (2.9)

To derive this result we introduce

A(L) - (g(L) - gc)Igc (2.10)

I • * as the basic scaling parameter (rather than g(L) itself as in Ref. 1).

For L of the order of the correlation length C this parameter is of order
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unity.9 For L << , A(L) << . In this case - LA-V (L) and thus,

for A << 1, the parameter A(L) scales as

A(L) = A0(L/L0 )l/v (2.11)

where A0 - (E-E c)/E c  is the initial value of the parameter at some scale,

e.g. the microscopic scale L 0

We consider now a sample of size and divide it into blocks of

"1 size L , i.e. b - t/L . For a large (- > Z ) sample with E above Ec

.2 (i.e. in the metallic region), the Hall conductance GH(S) must be propor-

tional to £ d-2 , which via Eq. (2.8) implies

'-(,C) L- (d-2) (X /L)d- 2 (A(L)) . (2.12)

tH
Since A - E - E , we require, by Eq. (2.3) that for A << I , (A) - A

Hence using Eq. (2.11) we have

( -(d-2) d-2 0 H (2.13)
LG. /L) A L(

Since the block size is arbitrary (the only condition being L << ) , it must

cancel out from Eq. (2.13), which immediately leads to relation (2.9) for the
10

4 exponents. Clearly, Eq. (1.5) for the conductivity exponent t can also

be derived by a similar argument.

Taking b - I + 8 (6-O) , the scaling relation (2.8) (or (2.7)) can be

cast into differential form

d in g.(L)/d in L - Y(g(L)) (2.14)

where Y(g) is a universal function of the scaling parameter g(L). For

g . , i.e. in the classical transport regime, g.(L) - Ld -2  and hence

Y - d - 2 . On the other hand, for g. 0 , i.e. in the strongly localized

regime, sH(L) , as well as s(L), is exponentially small and Y - -



-7-

Thus the qualitative behaviour of the y-function is similar to that of the

B-function. However, quantitatively these two functions are different as

is shown in the next section. It is this difference which accounts for the

difference in the critical behaviour of a(E) and a E).
H

Finally we would like to comment on the following point: In the above

arguments, as well as in the following calculations in Sections III and IV,

we ignore the dependence of the scaling parameter g(L) on the magnetic field

6B . This is justified only for B << c/4eL2 , where L is either the

sample size or the Thouless length, whichever is smaller. In particular, if

T - 0 and the sample size L (it is under these conditions when the

critical exponents can be rigorously defined) any finite field would change

g(L) in an essential way, and thus our results for this case refer strictly

speaking to an infinitesimal B . However, all the arguments of this

section can be repeated without change for a finite B (which satisfies the

criterion B << hLd02 /e2r derived above) if we assume that the magnetic field

does not represent a relevant scaling field for the Anderson transition

(d>2), i.e. we still have a single parameter scaling theory. The fact that

4 the scaling parameter g(L) becomes dependent on B changes nothing in our

arguments. Thus, if B is not relevant, we expect that the critical exponents

calculated in Section IV for an infinitesimal magnetic field (since the field

dependence of g is neglected) will remain unchanged at finite fields.

III. The Weak Scattering Regime

In this section we calculate the leading (i.e. proportional to 1/g)

quantum correction to the classical limit (d-2) of the y-function. Thus we

consider the weak scattering regime ki >> 1 , where k is the Fermi wave

number and L is the electron mean-free path.

,I
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For the 8-function this leading correction has been calculated in

Refs. 2,11. This correction is due to the maximally crossed diagrams, which

can be summed explicitly. The sample size L enters the calculation of

Ref. 2 via the lower cutoff l/L in some integrals over the momentum space.

This leads to an L-dependent conductivity o(L) from which one obtains the

conductance as G(L) - Ld - 2 o(L). Although the explicit calculation in

Ref. 2 has been done for d = 2 , it is trivially generalized to any dimension,

with the following result:

g(L;E) = (E)d-2 A L d-2
g(L;E) = O(E)L d-2 T--) - (3.1)

Here A = 2n- (27)- d Sd , where Sd = 2 d/2[r(d/2)]-I is the area

of a d-dimensional sphere of unit radius. The first term in Eq. (3.1)

represents the classical conductance, with

2)-1 -d Skd- 1

) = 2(e/)d (2) e. (3.2)

The second term in Eq. (3.1) represents the leading quantum correction. It

was assumed in the derivation of Eq. (3.1) that the sample size L is bigger

than the mean-free path t . The factors 2 in the expressions for A and

o0 account for spin-degeneracy.

In the limit d - 2 Eq. (3.1) takes the form

g = (T/e 2 )o 0 - (l/w2)tn(L/1) , (3.3)

and the result of Ref. 2 is recovered.

For the perturbative calculation above to be valid the second term

in Eq. (3.1) must be much smaller than the first one, which, with the help

of Eq. (3.2), leads to the following criterion:
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d -d 1 Z.d-2
a(L;E) - (ki) [1- 1i) ] < 1 (3.4)

In three dimensions the weak scattering condition kZ >> 1 itself insures

the fulfillment of criterion (3.4), for any L (bigger than 2.) . However,

near two dimensions, i.e. for (d-2) << 1 , the condition (3.4) is satisfied,

4 , for any L , only if a more restrictive requirement on kk is imposed,

namely ki >> 1/(d-2). (As we shall see below this corresponds to energies

much higher than the mobility edge.) Otherwise the condition (3.4) can be

satisfied only for not-too-log samples. In particular at two dimensions

the condition (3.4) reduces to Zn(L/1) << kZ , and hence for large enough

L the perturbative calculation breaks down, however high is the energy.

In terms of the parameter a Eq. (3.1) can be rewritten as

g(L;E) = (ft/e 2 )a 0 (E)Ld- 2 [I- (L;E)] . (3.5)

The $-function calculated from Eq. (3.1) is

a(g) = d - 2 - A/g (3.6)

Since A is a constant, depending only on dimensionality, the perturbation

calculation supports the existence of a universal scaling function 0(g).

We now discuss quantum corrections to the Hall conducatnce gH(L)

The contribution of the maximally crossed diagrams to the Hall conductivity
4

in two dimensions has been calculated by Fukuyama and, using a somewhat

different technique, by Altshuler et al. 6 Again the restriction to d - 2

in Refs. 4,6 is not essential and in fact the value of d is introduced only

at the final stage of the calculation. Employing the technique of Ref. 6

we find
1 d-2 2A L d-2g.H(L;E) " wc(-7 O0L d- [  

- ] }

- C -r(t/e2)a 0Ld-2[1-2(L;E) ] , (3.7)
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where w - eB/mc is the cyclotron frequency (m is the electron effective

mass). Thus the quantum correction to the Hall conductance, relative to the

leading classical term, is twice as big as the correction to the ohmic con-

ductance (Eq. (3.5)). This result which for d - 2 has been derived in

Refs. 4,6, holds for any dimensionality.

Differentiating Eq. (3.7) and using Eq. (3.1) for g, we obtain

d In gH/d In L = d - 2 - (2A/g)(l-c)/(l-2a) . (3.8)

With the approximation involved in calculation of g and gH (Eqs. (3.5),

(3.7)) it would be inconsistent to keep the small a-terms in Eq. (3.8).

Our approximation enables us to derive only the leading quantum correction

in the y-function:

y(g) = d - 2 - 2A/g = - (d-2) + 2a(g) (3.9)

In order to check if there are indeed no nonuniversal terms of order

cA/g in the y-function one needs to calculate both g and gH to the

accuracy a2 . The existence of the universal a-function implies that there

is no a2  term (nor higher order terms in a) in Eq. (3.5). For d - 2 the

absence of the a2 term has been proven in Ref. 11). On the contrary, if

a universal y-function exists, one must expect a term a2  (and no higher

order terms in a ) in the square brackets in Eq. (3.7). This would insure

that Eq. (3.9) holds also to higher order in a.

* IIntegrating Eq. (3.9) we have

gH(L) = gH6L/L0)- (d-2)[g(L)/g 0
] 2 (3.10)

* where g0 and gH0 are the initial values of g(L) and gH(L) at some

(microscopic) scale L0 . Eq. (3.10) implies that the leading quantum correc-

d-2
tion does not spoil the classical, i.e. as L , scaling of the parameter
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h(L) (Eqs. (2.7), (2.8)). This is in agreement with the assumption we

made in Section 2. On this basis, we conclude that the Hall conductance

exponent has the value tH = 2t = 2(d-2)v

4. e - Expansion near Two Dimensions

In this section we shall be interested in the critical behaviour of

aC(E) and OH(E) near the mobility edge E . The only physical dimension

of interest in this problem is d - 3, since at d = 1,2 all the states

are localized and there is no mobility edge at all. Unfortunately at

d = 3 the calculation of the preceding section are not valid near E

c

*since the parameter ki there is of order unity, while the weak scattering

71 regime requires kZ >> 1 . However, at d = 2 + c with c << I , one can

i establish a connection between the weak scattering regime and the critical

regime. This is possible because E when e - 0 , and thus for
c

'I small E the parameter kZ remains large even at the mobility edge. In

terms of the scaling parameter g this means that for small c , gc is

large, and therefore the necessary weak scattering condition g >> 1 is

fulfilled at the mobility edge (while for d = 3 gc ,)

4 -! The calculation is straightforward. The 8-function for small C

is given by

8(g) = d Zn g/d tn L = c - 1/n 2g . (4.1)

Small terms of the order c/g are omitted in Eq. (4.1). The zero of the

8-function is gC = I/n2e >> 1 . Integrating Eq. (4.1), with g(L0 ) = g0

as an initial condition, we obtain:

g(L) = gc[1 + A0 (L/L0 )E] (4.2)

where A0  (g 09 . In fact, this equation, with a properly chosen
0 0 c
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go 'is the same as Eq. (3.1). The difference is that Eq. (4.2) is valid

in a much larger region than the initial Eq. (3.1). Namely, in Eq. (4.2)

there is no restriction on L due to the condition a << 1 (Eq. (3.4)).

This is of course because we are relying on the universalcharacter of the

S-function. Thus the only condition for validity of Eq. (4.2) is g >> 1

This means that for A0 ; 0 (i.e. above or at the mobility edge) Eq. (4.2)

is valid for any L . On the contrary, for A0 < 0 , i.e. below the mobility

edge, Eq. (4.2) is valid for not-to-large a sample.

The exponents t and v are immediately obtained from Eq. (4.2).
!C

For A >0 and in the limit L + , g(L) is proportional to AoL

Since A - E - Ec , this means that the conductivity exponent t = 1 It
0c

follows then from the scaling relation (1.5) that the loclization length

exponent v = /e . The values for these exponents have been also obtained

by an approach based on a Lagrangean formulation of the localization problem

(see Ref. 12 and references therein).

The Hall conductivity exponent tH is obtained in a similar way.

Eq. (3.9) for the y-function and hence Eq. (3.10) for gH are valid if

g >> 1 . Thus, for C << 1 , Eq. (3.10) is valid for a sample of any size

L all the way down to the mobility edge. Substituting expres-ion (4.2) for

g(L) into Eq. (3.10) we obtain

(L) = (g 0/g2)(L/L 0)-C g9
2 [l + A0 (L/L0 ) 1  . (4.3)

For fixed L0 , the initial parameters g0  and g H0 depend on energy , i.e.

on A 0  Since we are interested in the region near the mobility edge

(A0 << 1) , we can take in Eq. (4.3) the values of these parameters at the

mobility edge. It follows from Eq. (4.3) that in the limit L + - , gH(L)

is proportional to A2L , and thus the exponent tH =2 This result

0 H
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confirms the scaling relation (2.9) between the exponents.

In addition to the difference in the critical behaviour of a(E)

and aH(E) (in an infinite sample), there are some essential differences in

the behaviour of g(L;E) and gH(L;E) as functions of sample size L , for

fixed Fermi energy E: i) At E = E the conductance g(L) = g and it isc c

independent of L . In contrast, the Hall conductance gH(L) at the

mobility edge does depend on L as C ii) If the energy is fixed

slightly above E (i.e. A << 1), the conductance g(L) is a monotonically
c 0

increasing function of L . However, the Hall conductance gH(L) first

decreases with L and reaches a minimum at a scale equal to the correlation

, length = A  
. Only for L > C does gH(L) increase monotonically

*with L

These differences between g (or a) and gH (or OH) arise from the

quantitative difference between the scaling functions $(g) and y(g) , and

in particular from the fact that these functions have zeros at different

values of g . For small E , the zeros of a and y functions are at

1/72c and 2/72c respectively. Note that it is only the zero of the

a-function which is associated with a critical point (the fixed point gc

of the recursion formula (1.2)). The zero of y-function has no such meaning,

since the scaling behaviour of gH is driven by g

Finally, at finite T and near the mobility edge the relevant

length scale for the conductivity is set by the temperature-dependent Thouless

78
length' LT rather than by the correlation length t (see Ref. 9). Then the

conductivity a(T) and the Hall conductivity a H(T) are expected to be

proportional to C and LT e respectively (compared to a(E) - E and
T T

aHC(E) - -2c at T 0).
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5. Conclusion

We have developed a scaling hypothesis for the Hall effect in dis-

ordered systems. It is suggested that a universal scaling function for the

Hall conductance exists, and the leading quantum correction (- 1/g)

to the classical value (d-2) of this function is calculated.

It follows from our theory that the critical exponent tH  for the

Hall conductivity is twice the conductivity exponent t. Since the Hall

coefficient r is proportional to a , we conclude that r(E) approaches
H

a constant value when the mobility edge is approached from above. On the

t
other hand, the Hall mobility H cra approaches zero as (E-E )

The behaviour of the Hall coefficient is in agreement with the accepted

view1 3 ' 1 4 that in a degenerate electron gas the "classical" expression

i/enc for the Hall coefficient (n is the electron concentration) remain

approximately valid even in the regime k - I . The agreement with the

picture of Refs. 13,14 of course fails when it comes to the Hall mobility

near Ec , since the minimum metallic conductivity assumed in Refs. 13,14

does not occur in the scaling theory.
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rtis jS 4gr(StL' thalt ;i1 ~Iriversal scaling function for the Hall conductance exis
.1n11 Lhe leading quantum otrreCi-n to the classical valtie (d-2) of this funti
is calcitloted (d fs tile dimrcriunaltv). It is shown, by mecans of a ncailinR

* ar.~ut1M1L , that 1L the mobility odsyt tii zero teWu,'rattire Hall ceindurt ivity
;tpproaichi',s zo*ro with nn Ie~poncr t -2t ,whvrc t Iq tile Lcnductivity expon-1
ent . Thil! relation between the exponcrts is supportcd hv 4~ rncroncopiC c..ICUla
In 2 I dimensions, which vilds t - . 61
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